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DESIGN AND ANALYSIS OF A RATE AUGMENTED 

DIGITAL- TO- ANALOG CONVERTER 

By Sheldon Kopelson 
Langley Research Center 

SUMMARY 

A rate augmented digital- to- analog converter for computed time-dependent data is 
designed and evaluated. The converter produces a smoothed continuous function by 
digitally incrementing the function samples at a rate proportional to the predicted func- 
tion change over each sample interval. The result is continuously converted to an analog 
voltage; this conversion produces an output which is, in effect, the sum of a linear ramp 
and the function sample. The converter input data a re  the computed sample and the 
change that is predicted by solving an nth-order extrapolation formula. 

Results a r e  presented of the performance of the rate augmented converter system 
for three different functions of time; both first- and second-order extrapolation formulas 
are used. In addition, the generalized transfer function of the formula-converter com- 
bination is derived and used to calculate transfer functions for several extrapolation 
formulas. For functions that a r e  band limited to 0.05 times the sampling frequency, the 
experimental and theoretical results indicate that a significant improvement in smoothing 
can be obtained by using suitably chosen extrapolation formulas which a r e  based upon 
three and four samples. 

The digital extrapolation technique preserves the static accuracy of the converter 
system and permits a simple adjustment of the system for different sampling rates. 

INTRODUCTION 

The increasing complexity of aerospace simulation studies has produced, in certain 
critical computations, requirements for high precision which have been met by the use of 
digital computers. Precise samples of time-dependent solutions of the simulation equa- 
tions are obtained at discrete intervals, the duration of which is in part  determined by the 
time required to execute the entire solution of a set  of simulation equations. The digital 
computers, however, a r e  operated in conjunction with either analog computers o r  analog 
control equipment whenever a part  of the simulation must remain in the continuous 
domain. One of the problems that ar ise  in such simulations is the conversion of the 



quantities obtained from the digital computer at discrete intervals into accurate, con- 
tinuous functions of real time. 

In conventional, or zero- order-hold, digital- to-analog converter systems the value 
of one sample is held until the arrival of the next value. The result is a stair-step 
approximation of the continuous function. Smoothing this signal by conventional low-pass 
filters is generally undesirable because of the excessive time lag which is introduced. 
Smoothing may also be effected by a reduction of the step interval by programing the 
digital computer to calculate, in addition to the sample quantity, a set of extrapolated 
quantities for the succeeding sample interval. (A polynomial f i t  to a number of preceding 
samples is generally used.) These extrapolated quantities a r e  transferred, in order, to 
the converter at submultiples of the sample interval. In a number of problems the level 
of smoothing provided by a few extrapolated points is acceptable. However, a relatively 
large number of extrapolation calculations and data transfers are required to obtain a 
high level of smoothing. In many problems the computational speed of the computer may 
not permit both the simulation and the extrapolation calculations within a sample interval 
that is consistent with the dynamics of the simulation. 

Reference 1 describes a smoothing method in which an analog computing circuit is 
used, after the converter, to provide a continuous linear extrapolation of the last two data 
samples. Extension of this technique to higher-order extrapolation requires an increase 
in the number of analog computing elements. However, any inaccuracies which exist in 
the smoothing circuit degrade the net conversion accuracy for static as well as dynamic 
functions. In addition, the method has the operational disadvantage of requiring one or  
more individual adjustments per converted function when the sample interval is changed 
for  different simulations. 

An investigation of the smoothing that could be obtained by linear extrapolations 
whose slopes were determined by polynomial fitting to preceding samples led to the 
development of the subject converter system which uses the digital computer to deter- 
mine the required extrapolation rate. At the start of each discrete time interval the 
computer furnishes two quantities to the converter system: the value of the function at 
that time and the predicted change in the function obtained by solving a selected nth-order 
extrapolation formula. During the sample interval the initial value is digitally incre- 
mented at a rate proportional to the predicted change concurrent with a continuous con- 
version of the result to an analog voltage. 

The performance of a single-channel prototype converter system was studied for 
three different functions of time; both first-order and second-order extrapolation for- 
mulas were used. A review of the logical circuitry of the prototype led to the design of 
a multichannel converter system in which the number of components per channel is 
reduced by functionally relocating some of the elements used to generate the digital 
ramps. 
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The generalized transfer function of the formula-converter combination was derived 
in terms of the weighting coefficients used in an nth-order extrapolation formula. 
culated transfer functions for several specific extrapolation formulas a re  presented. 

Cal- 

SYMBOLS 

Co,C1,C2, -. .,Cn weighting coefficients of Yk, Yk-1, Yk-2, . . ., Yk-n used in an 
extrapolation formula, where k, k - 1, k - 2, . . ., k - n refer 
to the present and previous values of y(t) 

t 

e r ro r  

frequency, Hz 

- 3  dB frequency of a first-order filter, Hz 

damped natural frequency of a second-order filter, fnd-, Hz 

natural frequency of a second-order filter, Hz 

transfer function in the frequency domain 

unit imaginary vector, j2 = -1 

numerical multiplier 

number of stages in a binary rate multiplier o r  bits in a digital-to-analog 
converter 

time, sec 

time of kth sample 

sample interval, tk+l - tk 

minimum sample interval at which converter system can be operated, sec 

continuous function of time, samples of which are obtained at finite intervals 

extrapolated approximation of y(t) 
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value of y(t) at tk yk 

total predicted change in the interval tk 2 t < k+l 
ratio of actual damping to critical damping 

AYk 

c 

a? phase angle, radians 

w frequency, radians/sec 

sampling frequency, radians/sec T '  

APPROXIMATION OF A CONTINUOUS FUNCTION 

BY LINEAR EXTRAPOLATION 

A time-varying function y(t), described only by a ser ies  of function values at fixed 
time intervals of spacing T, may be approximated by a set  of linear extrapolations 

(tk < tk+l) 

With the exception of negligible quantization increments, the output of the rate augmented 
digital-to-analog converter is described by equation (1). The input data from the digital 
computer a re  Yk, the value of the function at the start of the interval, and AYk, the cal- 
culated total change over the interval. 

The quantity AYk is a weighted summation of Yk and n preceding points; that 
is, 

The simplest method of determining the weighting coefficients for this extrapolation for- 
mula is to assume that Yk+l 
fits the selected points. However, for second- and higher- order polynomials the coeffi- 
cients can satisfy either of two criteria. One criterion is that the terminal value of the 
converter extrapolation be equal to the predicted next.value of the function. The other 
criterion is that over the interval T the average difference between the linear extrap- 
olation and the next segment of the fitted polynomial be zero. 
olations are referred to as minimum terminal e r ro r  and minimum average error ,  
respectively. In either extrapolation the coefficients a r e  derived by solving the equa- 
tions that result from the choice of the polynomial and extrapolation criterion. 

will lie on the extension of the nth-order polynomial which 

These two types of extrap- 
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The design of suitable extrapolation formulas is not necessarily restricted to the 
polynomial fitting method. For example, the formula may be designed to provide good 
extrapolations near the peaks of a sine wave which is sampled at a specific rate 
(appendix C) . 

PROTOTYPE RATE AUGMENTED DIGITAL-TO-ANALOG CONVERTER 

The fundamental principle of the digital rate augmentation technique is that the 
basic digital-to-analog converter (DAC) is driven by logic signals from a binary up/down 
counter rather than from a buffer register. At the start of each sample interval, the 
counter is preset to the value of the function. It is then incremented or decremented at 
a rate which is determined by the predicted change of the function during that sample 
interval. The predicted change is the result of a solution, by the digital computer, of 
some extrapolation formula. In order to convert both positive and negative function 
values to analog voltages without using an inverting amplifier and sign-controlled switch, 
the information in the counter must be in a numerical complement form rather than in 
sign-magnitude form. 
binary coded information with negative numbers expressed in two's complement form. 
As is shown subsequently the format of the predicted-change data must be converted to 
sign-magnitude form, within the system, in order to control the counting operation. 

The prototype system was designed for the conversion of natural 

The block diagram of the prototype of the rate augmented conversion system, which 
was assembled from commercially available digital logic cards, is shown in figure 1. 
The control sequence of the prototype is shown in figure 2. The range of the system is 
*(211 - 1) (i.e., sign and 11 data bits). This range was chosen to provide resolution 
compatible with the accuracy of the available DAC modules. 

The elements of the system below the horizontal line A-A in figure 1 have the 
capacity for serving additional converter channels. The computer tape processing 
equipment to the left of the vertical line B-B simulates an operating digital computer. 
Each block of data recorded on the magnetic tapes contains the two input quantities 
required by the system at the start of each sample interval: Yk, the value of the func- 
tion, and AYk/(211 - 1), the predicted change of the function divided by one-half of the 
range of the system. 

ties Yk and AYd(211 - 1). When the end of the tape block occurs, the conversion 
operation for that sample is started. The transfer gates a re  enabled so that the counter 
can be set to y k  which is stored in register A. Simultaneously, register C is set to 
AYk/(211 - 1) which is stored in register B. The transfer gates are then disabled so 
that the counter can respond to its pulse input. 

As a tape block is read, registers A and B a re  loaded in sequence with the quanti- 
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Transfer Up/down DAC 
A register gates counter matrix 

B 

I 
I 

__ - I - 
Analog 

~~ - signal \ \ 
d I - 

Y a w  
I 

enable 

inhibitor 
One's 

C register complementer 
PPS 

3 Chamel 
binary rate multiplier 

Magnitude 

Tape reading 
and address 
decoding 
equipment 

B strobe 

I :  I 

Interval -___. .-- - 

Figure 1.- Block diagram of prototype rate augmented digital-to-analog converter. 

A strobe +bn- 

B strobe ~- . I L - .  

End of block .->rn--- 

Converter clock 

Clock inhibit .- I I 

Transfer enable, C strobe n 
multiplier resets 

Gated clock 

I I I I I. 1 1  I I J 
-5 -4 -3  -2 -1 0 = t k  +1 +2 +3 +4 

Time, microseconds 

Figure 2.- Prototype converter control  sequence. 
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Conversion of the AYk information from two's complement to sign-magnitude 
representation is necessary to provide the counter with a count-up or  count-down control 
signal and to develop a separate set  of logical signals which determine the rate at which 
the counter is pulsed. The one's complementer performs a parallel one's complement 
to sign-magnitude conversion. Although this conversion causes an e r ro r  of the least 
significant bit (when negative numbers are converted), the circuit was chosen because of 
its speed and simplicity. 

The rate at which the up/down counter is pulsed is determined by the output of the 
channel binary rate multiplier (BRM). (See appendix A for a discussion of the BRM.) 
The BRM numerical multiplier input is the natural binary representation of the magnitude 
of ~ ~ k / ( 2 1 1  - I). Its multiplicand input is a pulse train of (211 - I)/T pulses per 
second, where T is the sample interval. The output or product of this multiplier is a 
pulse train of AYk/T pulses per  second. Consequently, in a sample interval 
tk 6 t < tk+l, the counter and, therefore, the DAC follow (in one bit increments) 
equation (1). 

In certain instances the numerical sum of the predicted change AYk and of the 
actual function value Yk exceeds the range of the counter. A counter overflow (which 
would result in a reversal of sign) is prevented by the overflow inhibitor shown in fig- 
ure  1. This circuit tests the status of the counter and inhibits the count-up o r  the count- 
down control signal when the counter reaches plus or minus full scale, respectively. 

The pulse source for the channel BRM is the output of the system BRM. The pulse 
input to the system BRM is a 1-MHz pulse train which is obtained, through a gate, from 
a crystal controlled pulse oscillator. (The maximum operating frequency of the logic 
elements used is 1 MHz.) For scaling purposes, this frequency is defined as the ratio 
of the converter half-range ( 2 l 1  - 1) to a minimum sampling interval Tmin. The multi- 
plier input is the ratio of Tmin to the sampling interval T which is used for a given 
problem. The output of the system BRM is a pulse train at the rate of (211 - 1)/T pps 
which is the required channel BRM input. In the prototype, T is the measured interval 
between the reading of successive tape blocks and the binary code for Tmin/T is 
determined by a set of 11 switches. In an operational converter system, T would be 
the iteration interval of a particular digital computer simulation program and the switches 
would be replaced by a register which would be set  to Tmin/T, by the computer, at the 
start of the simulation. 

For a given maximum pulse oscillator frequency, the value of Tmin is determined 
by the choice of the scaling constant (211 - 1) which is used to define the frequency as a 
BRM multiplicand. The value of this constant is limited by its additional use in the frac- 
tional representation of AYk. In this use, the constant cannot be less than the maximum 
value of AYk of a particular simulation problem. Considering all possible problems, 
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foreknowledge of the maximum values of AYk is not available. However, a difference 
between successive samples in excess of (211 - 1) would result in a predicted value for 
the next sample that would be off scale. It is assumed that the sampling rate in any prob- 
lem will be such as to prevent this occurrence. In this case, the scale factor (211 - 1) 
may be used for all simulation problems. 

TESTS OF THE PROTOTYPE 

Qualitative tests of the prototype rate augmented digital-to-analog converter were 
made by comparing time histories of its output signal with those of a zero-order-hold 
converter. The input information for these tests was generated by computing the values 
of a series of points of analytically describable time-varying functions. These data were 
recorded on digital magnetic tape which was  used as the actual input to the converters. 

Three parameters were investigated: type of input function, sample interval, and 
choice of extrapolation formula. The selected test functions were a sine wave, the 
response of a first-order filter to a step function input, and the response of a second- 
order filter to a step function input. For each function, both first-order and second- 
order extrapolation formulas were used to compute the AYk input for  the rate aug- 
mented converter. The second-order extrapolation was of the minimum terminal e r ro r  
type. The zero-order-hold and the rate augmented converters were operated in parallel; 
the former received only the Yk input sample and the latter received both the Yk and 
the AYk samples. 

TEST RESULTS AND DISCUSSION 

Figure 3 shows the oscilloscope traces of the output signals of both the rate aug- 
mented and the zero-order-hold converters for sine waves which were sampled at 20, 40, 
60, and 120 samples per  cycle. The first-order extrapolation formula 

AYk = Yk - Yk- 1 (3) 

was used for this test. At all four sampling ratios the rate augmented converter pro- 
vided a more accurate representation of the continuous function over most of each cycle. 
However, first-order extrapolation resulted in overextrapolations at the sine wave peaks. 
Calculated values range from 9 percent of peak amplitude at 20 samples per cycle to 
0.2 percent at 120 samples per cycle. Converter outputs for sine wave samples, where 
the second-order extrapolation formula 

Ayk = 2Yk - 3Yk-1 -t- Yk-2 (4) 

was used, are shown in figure 4. The overextrapolation e r ro r s  for the four sampling 
ratios are reduced to a range from 1.4 percent to 0.002 percent. 
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(a) 20 samples per cycle. (b) 40 samples per cycle. 

(c) 60 samples per cycle. (d) 120 samples per cycle. 

Figure 3.- Rate augmented OAC output us ing AYk = Yk - Yk-1 compared with zero-order-hold output 
(lower trace) for  sine wave. 

(a) 20 samples per cycle. (b) 40 samples per cycle. 

(c) 60 samples per cycle. (d) 120 samples per cycle. 

Figure 4.- Rate augmented OAC output us ing hYk = 2Yk - 3Yk-1 + Yk-2 compared with zero-order-hold output 
(lower trace) for sine wave. 
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Converter outputs for samples of the response of a first-order filter to a step 
function disturbance as obtained by first-order and second-order extrapolation formulas 
are shown in figures 5 and 6, respectively. 
could not be defined. Thus, the sampling ratios chosen were 20fc, 40fc, 60fc, and 120fc. 
As can be seen in figure 6, the second-order extrapolation formula caused a significant 
e r r o r  at the beginning of the step function response. By comparing figures 5 and 6, how- 
ever, it can be seen that beyond this point the second-order extrapolation formula pro- 
vided better smoothing than did the first-order formula. 

For these tests, a specific function frequency 

Converter outputs for samples of the response of a second-order filter to a step 
function disturbance are shownin figures 7 and 8. The response was  computed for a f i l -  
ter with 70.7 percent critical damping. The sampling ratios used were 20fd, 40fd, 60fd, 
and 120fd. Unlike that of the first-order filter, the response of the second-order filter to 
a step function disturbance does not have a sharp discontinuity. As can be seen by com- 
paring figures 7 and 8, better smoothing was  achieved for this time-varying function by 
using the second-order extrapolation formula with the rate augmented converter system. 

In addition to demonstrating the feasibility of the digital techniques which were 
utilized to provide rate  augmentation, the tests afforded an empirical basis for comparing 
the effectiveness of the first- and second-order formulas which were used to determine 
the linear extrapolation rates. For the time-varying functions used, a more accurate 

(a) 20 samples per cycle of fc. (b) 40 samples per cycle of fc. 

(c) 60 samples per cycle of fc. (d) 120 samples per cycle of fc. 

Figure 5.- Rate augmented DAC output using AYk = Yk - Yk-1 compared with zero-order-hold output 
(lower trace) for first-order step response. 
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(a) 20 samples per cycle of fc. (b) 40 samples per cycle of fc. 

(c) 60 samples per cycle of fc. (d) 120 samples per cycle of fc. 

Figure 6.- Rate augmented DAC output us ing AYk = 2Yk - 3Yk-1 + Yk-2 compared with zero-order-hold output 
(lower trace) for f i rst-order step response. 

(a) 20 samples per cycle of fd. (b) 40 samples per cycle of fd. 

(c) 60 samples per cycle of fd. (d) 120 samples per cycle of fd. 

Figure 7.- Rate augmented DAC output us ing AYk = Yk - Yk-1 compared with zero-order-hold output 
(lower trace) for second-order step response. 
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(a) 20 samples per cycle of fd. (bJ 40 samples per cycle of fd. 

(c) M) samples per cycle of fd. (d) 120 samples per cycle of fd. 

(lower trace) for second-order step response. 
Figure 8.- Rate augmented DAC output using AYk = 2Yk - 3Yk-1 + Yk-2 compared with zero-order-hold output 

representation of the continuous function was obtained, in general, with the second-order 
extrapolation formula. However, its effectiveness was reduced where the time-varying 
function had sharp discontinuities. 

For AYk = 0, the system counter acts as a static register which contains Yk. 
The static accuracy of the converter system is therefore determined by that of the DAC 
modules which in the prototype is 0.06 percent of full range. 

given in percent of the system range which is +(2l1 - 1) or (212 - 2): 
For nonzero Ayk, the converter system is subject to the following e r ro r s  that a r e  

(1) Clock inhibition: In figure 2, the system clock is inhibited one clock pulse 
before the counter is preset to a new starting value. The inhibition continues for the 
next two clock pulses. At the maximum extrapolation rate (AYdT = I MHz), this inhibi- 
tion results in a constant e r ro r  or 200/4094 percent to which is added an e r ro r  of 
100/4094 percent for the last clock interval. 

(2) Incrementing error:  The derivation of the maximum value of the incrementing 
e r r o r  that results from the use of the binary rate multipliers is given in appendix A. 
This error is less than 4000 percent. 

9 X 4094 

12 



(3) Propagation error: In the prototype system, the synchronous counting technique 
is used for all but the five least significant stages of the up/down counter. 
counts, an e r ror  occurs because of the propagation time (0.25 microsecond per stage) of 
these five stages. The e r r o r  increases in logarithmic increments during the total propa- 
gation interval. In the worst case the total interval is 1.25 microseconds and the peak 
e r ro r  (during the last 0.25 microsecond) is 3100/4094 percent. 

On even 

AN OPERATIONAL MULTICHANNEL CONVERTER SYSTEM 

After the prototype was  tested, the economic value of certain design alterations 
became apparent. 
multichannel system (fig. 9). The system would be designed for a scale of N bits plus 
sign. 

These changes are indicated in the block diagram of a proposed 

' S  - 
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Figure 9.- Block diagram of operational multichannel rate augmented DAC system. 
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One change would eliminate one computer division operation required to prepare 
the input data for each channel by redefining the AY input fraction as AYk/2N and 
redefining Tmin as aN divided by the oscillator frequency. Since the data trans- 
mitted from the computer to the converter system are in fixed-point binary format, an 
imaginary relocation of the binary point changes the computed Ayk to the binary frac- 
tion A Y ~ / ~ N .  

Cost reduction of a multichannel system would be effected by relocation of certain 
logical functions into sections which serve all the channels. Accordingly, the one's 
complementer is located so that all data pass through it as they a r e  addressed to the 
individual converter channels. .In this equipment, the A and B (or AYk) input registers 
of each channel may be considered to be independent, for addressing purposes, and even 
addresses may be assigned to all the B registers. 
be made to serve all channels by adding to it the logic elements required to assure that 
only data addressed to even numbered registers a r e  complemented. 

A single one's complementer can then 

Where sign-magnitude arithmetic format is used in the computer, it would be 
necessary to convert the format of the Yk data while leaving unaltered that of the 
AYk data. The format conversion would be inverted (Le., sign-magnitude to one's com- 
plement), and the address logic would be changed to insure that the Yk data were 
converted. 

A second equipment cost reduction would be achieved by separating the functions 
of the channel binary rate multiplier, used in the prototype, into a binary rate generator 
and a binary rate selector-combiner. The binary rate generator would be located in the 
section which served all channels of a multichannel system, as shown in figure 9. Its 
output would be a parallel set  of pulse trains at the rates of 2N/2T, 
2N/2NT pps. These pulse trains would be transmitted, through digital amplifiers, to all 
channels. Each channel would have a binary rate selector-combiner, whose output is a 
single pulse train. For  a particular channel the pulse rate in pps would be AYk, fo r  
that channel, divided by T. 

2N/4T, . . ., 

Figure 9 also shows the interval ratio register which is used to change the time 
scaling whenever the simulation problem is changed. 
problem, is transferred from the computer to the register as part  of the initializing 
routine of the digital simulation program. The interval ratio operates on the system 
clock frequency; thus the time scaling for all channels is set  simultaneously. 

The fraction T,in/T, for the new 

SYSTEM TRANSFER FUNCTIONS 

The analysis of the combination of the computer- solved extrapolation formula and 
the rate augmented converter as the equivalent of a filter, the input of which is a ser ies  
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of impulse samples of a continuous function, is given in appendix B. In most instances, 
the available information regarding a sampled function, before performing the simula- 
tion, describes the frequency response characteristics of the simulated system from 
which it originates rather than the time domain characteristics of the function itself. In 
these cases, the response characteristics of the conversion filter are useful in esti- 
mating the smoothing effectiveness of a particular extrapolation formula. 

For the general extrapolation formula, the transfer function of the conversion f i l -  
t e r  is 

+ (co - c cos wT + (cl - c cos 2wT + . . . + (Cn-l - Cn)COS nwT 1) 2) 

+ cn cos(n + 1)wT + 1 + c wT sin wT + clwT sin 2wT + cZwT sin 3wT ( 0)  

+ . . . + cnwT sin(n + 1)wT + j -wT + 1 + c wT cos wT + clwT cos 2wT I [  ( 0 )  

+ c2wT cos 3wT + . . . + cnwT cos(n + 1)wT - (co - c sin UT 1) 

- (cl - c sin 2wT - . . . - (Cn-l - c sin nwT - Cn sin(n+ 
2) 4 

where T is the period between samples. For a specific extrapolation formula, both 
the normalized gain IG(jw)/T)l and the phase response of the conversion filter can be 
readily computed as a function of the ratio of signal frequency to sampling frequency 
w / w s .  This normalized form is convenient since the transfer function of the sampling 
process by which the input data a r e  obtained has an overall gain factor 
be canceled by the factor T of equation (5). 

1/T, which can 

Gain and phase responses of the conversion filter were computed for the extrapola- 
tion formulas in table 1. The first five formulas a re  based on conventional polynomial 
curve fitting and include the two formulas for which experimental results were obtained. 
The last two formulas are designed to provide good extrapolations near the peaks of sine 
waves sampled approximately 20 times per cycle and, like polynomial-based formulas, 
provide exact extrapolations for linear functions. These last two formulas a re  derived 
in appendix C. 

The computed gain and phase responses a re  shown in figure 10, where the range 
beyond w/ws = 0.5 describes the response to the first two of the infinite number of com- 
plementary signals (ref. 2) which a r e  created by the sampling process. The response of 
zero-order-hold, o r  conventional, converter is included for comparison. In figure 11, 
these responses a r e  plotted to a larger scale for w/ws = 0 to 0.07. 
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Table 2 lists the gain and phase responses at w / w s  = 0.05 as well as the gain at 
the carresponding first complementary frequency (w /ws  = 0.95). A relative evaluation 
of the extrapolation formulas can be made by comparing the response characteristics 
and by correlating the characteristics with available experimental results. For example, 
a comparison of the conventional converter with the first-order-formula-rate- 
augmented-converter combination at w / w s  E 0.05 indicates that the large e r ro r s  which 
the conventional converter exhibits in the time domain (fig. 3(a)) are caused by its rela- 
tively large phase lag, at this frequency, and poor attenuation of complementary signals. 
The first-order-formula-rate-augmented-converter combination. has both lower phase 
lag and better complementary signal attenuation. However, its gain at the data frequency 
is 4 percent greater than unity. The result is seen in the noticeable overshoots near 
the peak of the test sine wave. 

For samples of arbitrary functions which are band restricted to a radian frequency 
of approximately 0.05ws, four of the formulas in table 1 provide good information fre- 
quency response (both amplitude and phase) coupled with good attenuatipn of complemen- 
tary signals. In the order of which the responses approach the ideal conversion filter, 
they are the second-order minimum terminal error ,  three-point sine wave fitted mini- 
mum average error ,  third-order minimum terminal error ,  and the third-order minimum 
average e r ror  formulas. 
(figs. 10 and 11, and table 2) for formula 5 (and the converter) are extremely close to 
those of an ideal conversion filter. However, the gain responses (fig. lO(a)) begin to rise 
rapidly above w / w s  = 0.05. The choice of an extrapolation formula should, therefore, 
be conditioned by the gain roll-off characteristics of the simulated systems from which 
the function samples are obtained. The magnitudes of the gain peaks (fig. lO(a)) a r e  
indicative of the relative sharpness required in the roll-off. This point is corroborated 
by the experimental results obtained for the second-order minimum terminal e r ro r  
formula for step functions passed through both first-order and second-order low-pass 
filters (figs. 6 and 7). 

For this frequency range, the response characteristics 

CONCLUDING REMARKS 

A rate augmented digital- to-analog converter (DAC) has been developed and utilized 
in a conversion technique for calculated time-dependent data which uses a computer- 
solved extrapolation (or interpolation) formula to determine the change of the continuous 
function between successive sampled data points. Extrapolation formulas would be used 
for closed-loop or real- time processes such as simulation. Experimental and analytical 
studies of the technique indicate that a significant increase in the accuracy with which a 
varying function of time is reproduced as a continuous signal can be obtained by extrapo- 
lation formulas which are based upon three or more preceding samples. These formulas 
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may be either a minimum terminal e r ro r  or a minimum average e r ro r  type. In addi- 
tion, a choice of formula design may be made between polynomial fitting and sine wave 
fitting. 
generalized transfer function provides a simple and effective means of validating the 
formula choice. 

Calculation of the formula- converter gain and phase characteristics from the 

The use of digital circuitry to provide the rate augmentation in the circuit before 
the basic DAC module resulted in two additional features: 

1. The static accuracy of the system is entirely determined by the DAC module. 

2. In a multichannel converter system, only one adjustment is required to match 
the basic extrapolation rate, for all channels, to the rate at which solutions are obtained 
from the computer. This adjustment may be simply automated and included in the ini- 
tialization part  of the digital computer program. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., March 30, 1967, 
12 5- 19- 06- 0 1 - 23. 
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APPENDIX A 
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QIi 

THE BINARY RATE MULTIPLIER 

- 

The logic circuit of the binary rate multiplier (BRM) which was used in the rate 
augmented digital-to-analog converter is shown in figure 12. The BRM multiplicand 
input is the pulse train input fo to the counter and its multiplier input is the binary 
code representing a given fraction M. The BRM logic circuit is similar to the circuit 
described in reference 3 except that the high repetition rate of the BRM input and the 
length of the counter dictated the use of the synchronous counting technique. This tech- 
nique, however, facilitated the generation of pulses which marked the transition of each 
counter flip-flop to the set state. These pulses, when gated in accordance with the code 
representing M and then combined, make up the output pulse train. 

A typical timing diagram for a BRM for which the pulse input occurs at regular 
19 intervals is shown in figure 13 for M = -. 32 

-. 

- 
al ~ 

U 

c =AB *ac B 

‘Equivalent circuit 
(see also fig. 13) 

’k 

Figure 12.- Logic c i rcu i t  of binary rate mult ipl ier. 
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If the pulse rate of the multi- 
plicand is fo, the multiplier is 
defined as 

M = 0.a1a2 . . . ak . . . 4 2  ( 
(A 1) 

and ak is the least  significant bit 
that is a "l", then for ak input 
pulses the BRM will emit M2k 
pulses. . Thus, for input and output 
rates averaged over integral multi- 
ples of the period 2k/fo, the 
circuit performs the exact 
multiplication 

f l  = Mfo (A21 

Within these intervals the output 
may be viewed as a frequency- 
modulated pulse train of car r ie r  
frequency fl .  

In the rate augmented 
digital- to-analog converter, the 
output of a BRM increments a 
binary counter to approximate a 
continuous ramp. If the counter 
were incremented at constant pulse 
spacing, unidirectional e r ro r s  of 

BRM multiplicand 
m m  

-Ll u u uw u u m u u m  u U T  
BRM output 

Figure 13.- Binary rate mult ipl ier signals. M = 19 (that is, 0.100112). 
32 

Time 

Figure 14.- Sum of BRM pulses compared with continuous ramp. 

one count would occur. 
both positive and negative errors .  At a given point the magnitude of the e r ro r  is a func- 
tion of both M and the number of pulses n into the BTWI; this is illustrated in fig- 

19 ure  14 for M = -  
32' 

However, the "frequency-modulated" output of a BRM produces 

Reference 3 presents a method of determining the e r ro r  for a single BFtM preceding 
the counter. For a BRM containing N stages, the value of the maximum possible e r ro r  
Em,, is 

Table 3 lists both the time of occurrence of the maximum positive e r ro r s  and the causa- 
tive multiplier as a function of the number of stages. 
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For the rate augmented digital-to-analog converter, the e r r o r  of interest is the 
maximum e r ro r  which may occur when the counter is preceded by two BRM's in series. 
A general analytic solution for the exact value of this e r ro r  is not available in the litera- 
ture. However, the limiting value of the e r r o r  can be derived by expressing the e r r o r  
E(n,M) (input count of n pulses, multiplier of M) calculated for each BRM (treated 
as an independent single unit) as an e r ro r  in the timing of the output pulse relative to the 
period of the ideal output frequency. This timing e r r o r  is illustrated in figure 15 for  

5 an '"modulated'' input to the first BRM at frequency fo and for multipliers M 1  = 
and M2 = The ideal output of the first BRM is represented in figure 15(c). Each 
output pulse lags its corresponding pulse in the actual output (fig. 15(b)) by 

8 
8. 

seconds, where subscript 1 denotes the position of the BRM in the series. 

If the pulse train in figure 15(c) were the output of the first BRM and, hence, the 
f 1 

input to the second BRM, the output of the latter BRM would be that in figure 15(d). The 
ideal output of this multiplier, at frequency M1M2f0, is shown in figure 15(e). Each 
pulse in the ideal output lags the corresponding pulse in figure 15(d) by 

Figure 15.- Pulse trains for two binary rate multipliers i n  series. (Primes 
indicate "unmodulated" pulse trains.) 
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seconds. However, the actual output of the second BRM is the pulse train in 

figure 15(f). Further, each pulse of figure 15(f) occurs at the same time as a pulse of 
figure 15@) and each pulse of figure 15(d) occurs at the same time as a pulse of fig- 
u re  15(c). Thus, the lag between corresponding pulses of the ideal and actual outputs of 
the second BFtM is 

E (n29M2) 
f2 

By substituting f2/M2 for fl, the e r ro r  at a given pulse of the output of the ser ies  of 
B a ' s  is 

For given multipliers M i  and Ma, the maximum output e r ro r  occurs when the indi- 
vidual maxima coincide. The amplitude of this e r ro r  is maximized if M 1  is either of 
the two values that permits a maximum possible e r ro r  for the first BRM. It is not 
necessarily maximized by setting Ma at the upper value that permits a maximum pos- 
sible e r ror  for the second BRM since a higher value may result in a greater increase in 
the first term than the decrease in the second term. However, since M2 < 1 and the 
e r ro r  of either multiplier cannot exceed that calculated from equation (A3), the limit of 
the e r ro r  for  the two BRM's in ser ies  can be stated as 

where N1 and N2 denote the number of stages in the first and second BRM's, 
respectively. 



APPENDIX B 

GENERALIZED TRANSFER FUNCTION OF THE CONVERSION SYSTEM 

The rate augmented digital- to-analog converter requires two inputs to produce the 
output ya(t) and, therefore, it does not have a transfer function in the conventional 
sense. However, the total system, which includes implementing an extrapolation formula 
within the digital computer and the converter, does have a single input, which is the 
ser ies  of computed values (or samples) Yk. The system therefore has a definable 
transfer function which can be determined by the conventional method of dividing the 
Laplace transform of its response to a disturbance by the transform of the disturbance 
and then replacing the Laplacian operator s with jw. 

As stated in the literature, such as reference 2, the ser ies  of samples is a train of 
unit impulses each of which is multiplied by the value of the function at the time of 
sampling. The system transfer function, 
in Laplace notation, is thus equal to the transform of its response to one unit impulse. 

The transform of one unit impulse is unity. 

The response of the system to an impulse may be determined from the equation 
which defines its output in response to a set  of samples - that is, from 

where the weighting coefficients a r e  determined by the choice of extrapolation formula. 
It is evident that a specific sample assumes different weights in each succeeding interval 
with the response to that sample extending over a number of intervals equal to the num- 
ber  of weighting coefficients. 

The normalized response of 
The transform of this response is 

the system to a single sample is shown in figure 16. 

- (n+l) s T  1 F(s) = - -(c + sT) - sT[(1 I- co)e-ST + + c2e -3sT + . . . + cne 
  ST)^ 
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l + c  t / I/ c2 +3 I I 

I \ I 

I I I 1 

T 2T 3T 4T 5T 
Time, sec 

Figure 16.- Uni t  impulse response of a l inear extrapolation fi l ter. 

The generalized transfer function of the conversion system is therefore 

+ (co - c cos UT + c1 - c cos 2wT + . . . + (cn-l - c cos nwT 1) ( 2) n) 

+ cn cos(n + 1)wT + 1 + c wT sin wT + clwT sin 2wT + c2wT sin 3wT ( 0) 

+ . . . + CnwT sin(n + l ) w q  + j[-wT + (1 + c0)wT COS UT + clwT COS 20T 

+ c2wT cos 3wT + . . . + cnwT cos(n + 1)wT - (co - cl)sin UT 

- c sin 2wT - . . . - (cnm1 - c sin wT - cn sin(n + - (c1 2) n) 
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NONPOLYNOMIAL EXTRAPOLATION FORMULAS 

Extending a parabola fitted to three equally spaced points on a function in order to 
predict the succeeding point results in overshoot at the peak values of sine waves. How- 
ever, an exact peak prediction can be made for  a specific ratio of sample interval to 
sine wave period if the coefficients of the extrapolation formula 

are chosen such that 

where the sample interval, expressed in radians, is 27rw/ws. However, two constraints 
a r e  required in addition to equation (C2) to define the coefficients. A useful pair of con- 
straints is that the extrapolation formula yield exact extrapolations when y(t) is linear 
and that this occur regardless of the value of Yk. For a linear function y(t) the first  
constraint results in 

and, for the general form of the extrapolation formula, in 

which reduces to 

A Y = Y  k (  c 0 + c1 + . . . + c n ) -  AY(Cl+2cz+ . . . +ncn) (C4) 

Since no restraint is placed on Yk, 

j=n 1 c j = o  
0 

and 

j =n 
jcj = -1 c 

1 
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The solution of equations (C2), (C5), and (C6) for n = 2 and a specific ratio of 
o / w s  provides a minimum terminal e r ror  extrapolation formula. The formula which 
yields exact peak values for sine waves sampled every 18.48O (approximately 20 samples 
per  cycle) and which also has rational coefficients is 

By comparison, a second- order minimum terminal e r r o r  extrapolation formula gives 
peak overshoots of 1.5 percent at this sampling ratio. 

A minimum average e r ro r  extrapolation is defined as one for which, over the 
interval tk 5 t = tk+l, the average e r ror  between the linear approximation and y(t) 
equal to zero and which is expressed by 

is 

I- 

However, y(t) is only known to be some function which passes through its sampled 
values and which is expected to pass near a predicted next value. The most convenient 
function to assume in order to solve equation (C8) is a polynomial whose order is one 
less than the number of points to which i t  is fitted. Although equation (C7) is based upon 
three function samples, it is not derived from a polynomial. 
next value 

Therefore, the predicted 

Yk+l=Yk+ -Y - - Y  54 @," k 16 k-1 

may be used with the sampled values Yk-2 through Yk to define y(t) as a third- 
order polynomial. If this third-order polynomial is used to define y(t), the solution of 
equation (C8) results in the minimum average e r ro r  extrapolation formula 

3 7 9 y  --y 566 187 
A Y k = m  k 192 k-1'192 k-2 
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1 
2 
3 
4 
5 
6 
7 

\ 

-1 
-3 

-16/6 
-6 

-59/12 
-54/16 

- 566/192 

TABLE 1 .- WEIGHTING COEFFICIENTS O F  EXTRAPOLATION FORMULAS 

p y k  = “Oyk + “lYk-1 ‘zyk-2 + * ’ cnyk-n] 

0 
1 

5/6 
4 

37/12 
19/16 

187/192 

Formula 

1 
2 
3 
4 
5 
6 
7 

Extrapolation type 

1st order 
2d-order, minimum terminal e r ror  
2d-order, minimum average e r ror  
3d-order, minimum terminal e r ror  
3d-order7 minimum average e r ror  
3-point sine wave fitted, minimum terminal e r ror  
3-point sine wave fitted, minimum average e r ror  

~~ 

“0 

1 
2 

11/6 
3 

31/12 
35/16 

379/192 

c1 I “2 

TABLE 2.- SYSTEM RESPONSE AT w / w S  = 0.05 AND 0.95 

Extrapolation type 

Conventional converter (zero-order hold) 
1st order 
Zd-order, minimum terminal e r ror  
2d-order, minimum average e r ror  
3d-order7 minimum terminal e r ror  
3d-order7 minimum average error  
3-point sine wave fitted, minimum terminal error  
3-point sine wave fitted, minimum average error  

w / w S  = 0.05 

Normalized 

la T 
0.996 
1.040 
.997 

1.004 
.988 
.997 
.989 
.998 

~ 

Phase 
angle , 
@, rad 

-0.1571 
- .009‘i 
+.0143 
+.0103 
+.0024 
+.0013 
+.019c 
+.013€ 

~ 

c3 

0 
0 
0 
-1 

-9/E 
0 
0 

.’/us = 0.9: 

qor maliz ed 
gain, 

0.0524 
.0166 
.0080 
.0076 
.0040 
.0036 
.0095 
.0078 
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TABLE 3.- OCCURRENCE OF POSITIVE MAmMUM MULTIPLIER ERROR 

FOR AN N STAGE BINARY RATE MULTIPLIER 

N odd 

N even 

Multiplier 

3 x 2N 

5X aN-' + 1 
3 x 2N 

Error  occurrence, 
input counts 

p + 1 -  1 
3 

5X 2N-1 + 1 
3 

5XaN-' - 1 
3 
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